On Exploiting Problem Structure in a Basis Identification Procedure for Linear Programming

نویسنده

  • Erling D. Andersen
چکیده

During the last decade interior-point methods have become an eecient alternative to the simplex algorithm for solution of large-scale linear programming (LP) problems. However, in many practical applications of LP, interior-point methods have the drawback that they do not generate an optimal basic and nonbasic partition of the variables. This partition is required in the traditional sensitivity analysis and is highly useful when a sequence of related LP problems are solved. Therefore, in this paper we discuss how an optimal basic solution can be generated from the interior-point solution. The emphasis of the paper is on how problem structure can be exploited to reduce the computational cost associated with the basis iden-tiication. Computational results are presented which indicate that it is highly advantageous to exploit problem structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

A Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment

This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...

متن کامل

On solving possibilistic multi- objective De Novo linear programming

Multi-objective De Novo linear programming (MODNLP) is problem for designing optimal system by reshaping the feasible set (Fiala [3] ). This paper deals with MODNLP having possibilistic objective functions coefficients. The problem is considered by inserting possibilistic data in the objective functions coefficients. The solution of the problem is defined and established under the using of effi...

متن کامل

A Parametric Approach for Solving Multi-Objective Linear Fractional Programming Phase

In this paper a multi - objective linear fractional programming problem with the fuzzy variables and vector of fuzzy resources is studied and an algorithm based on a parametric approach is proposed. The proposed solving procedure is based on the parametric approach to find the solution, which provides the decision maker with more complete information in line with reality. The simplicity of the ...

متن کامل

A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...

متن کامل

A New Two-Stage Method for Damage Identification in Linear-Shaped Structures Via Grey System Theory and Optimization Algorithm

The main objective of this paper is concentrated on presenting a new two-stage method for damage localization and quantification in the linear-shaped structures. A linear-shaped structure is defined as a structure in which all elements are arranged only on a straight line. At the first stage, by employing Grey System Theory (GST) and diagonal members of the Generalized Flexibility Matrix (GFM),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1999